Com as reformas, desregulamentações e desestatizações em diversos mercados de energia elétrica, as metodologias de previsão de séries temporais de preços de eletricidade têm se tornado ferramentas importantes na análise, planejamento e gestão desse setor. Os mercados que possibilitam a negociação dinâmica da eletricidade, em sua grande maioria, operam no esquema day-ahead, onde o operador do sistema define simultaneamente 24 preços para o dia seguinte, um para cada hora do dia, com a finalidade de equilibrar a oferta e a demanda. Devendo assim o modelo matemático-computacional prever os preços do dia seguinte com base no histórico de cotações. Para este propósito, é utilizado neste trabalho o N-BEATS (Neural Basis Expantion Analysis for Interpretal Time Series), modelo do estado-da-arte em previsão de séries temporais baseado em aprendizado profundo, especificamente em sua versão otimizada para
preços de eletricidade, a NBEATSx (N-BEATS com variáveis exógenas). Como contribuição, são adicionados ao modelo NBEATSx o conceito de estabilidade de previsão e a técnica de Max-Pooling somada à interpolação hierárquica com o intuito de melhorar sua acurácia de previsão. As variantes geradas pela NBEATSx passam por técnicas de combinação de previsões, resultando no modelo NBEATSx-G-EA (NBEATSx Generic - Ensemble Averaging). Um modelo de Redes Neurais Artificiais Profundas DNN (Deep Neural Network) e um modelo estatístico, ambos do estado-da-arte, são empregados como base comparativa. Os modelos são aplicados em cinco conjuntos de dados padronizados da área, advindos de mercados bem estabelecidos da Europa e Estados Unidos. Os resultados são avaliados tomando por base medidas de erro tanto tradicionais quanto específicas da área, além de testes estatísticos de significância da diferença na acurácia entre as previsões. O número de iterações do algoritmo de otimização de hiperparâmetros da NBEATSx-G-EA foi reduzido a três quintos do correspondente da NBEATSx, diminuindo na mesma razão o tempo de treinamento da rede. Dentre estes cinco conjuntos, o modelo NBEATSx-G-EA proposto consegue se equiparar ou superar significativamente o modelo DNN em dois dos conjuntos em que o modelo NBEATSx não é efetivamente capaz. Em outros dois conjuntos, os modelos NBEATSx-G-EA e NBEATSx se equiparam. A NBEATSx supera o modelo proposto NBEATSx-G-EA apenas no quinto conjunto.