Neste trabalho estudaremos o problema de valor inicial (PVI) associado à equação de Zahkarov-Kuznetsov generalizada (gZ-K). Uma questão primordial em equações diferenciais parcias é o problema de boa colocação, que consiste em saber se a cada condição inicial dada for possível encontrar uma, e somente uma, solução da equação satisfazendo a condição inicial e que além disso tal solução dependa continuamente dos dados iniciais. Nesse sentido provaremos que o PVI associado à equação gZ-K é bem posto para dados iniciais em espaços de Sobolev de índice s>3/2–2/k (onde k é um parâmetro que aparece na equação). A técnica que empregamos para obter tal resultado consiste em transformar o PVI em uma equação integral, cujas soluções são pontos fixos de um certo operador (operador integral associado). Para construir um espaço de Banach onde o operador integral é uma contração, nos valemos de várias estimativas para as soluções da parte linear da equação tais como efeitos suavizantes, estimativas de função maximal, imersões de Sobolev e decomposição de Littlewood-Paley.